A Model-Based Approach to Identify Binding Sites in CLIP-Seq Data

نویسندگان

  • Tao Wang
  • Beibei Chen
  • MinSoo Kim
  • Yang Xie
  • Guanghua Xiao
چکیده

Cross-linking immunoprecipitation coupled with high-throughput sequencing (CLIP-Seq) has made it possible to identify the targeting sites of RNA-binding proteins in various cell culture systems and tissue types on a genome-wide scale. Here we present a novel model-based approach (MiClip) to identify high-confidence protein-RNA binding sites from CLIP-seq datasets. This approach assigns a probability score for each potential binding site to help prioritize subsequent validation experiments. The MiClip algorithm has been tested in both HITS-CLIP and PAR-CLIP datasets. In the HITS-CLIP dataset, the signal/noise ratios of miRNA seed motif enrichment produced by the MiClip approach are between 17% and 301% higher than those by the ad hoc method for the top 10 most enriched miRNAs. In the PAR-CLIP dataset, the MiClip approach can identify ∼50% more validated binding targets than the original ad hoc method and two recently published methods. To facilitate the application of the algorithm, we have released an R package, MiClip (http://cran.r-project.org/web/packages/MiClip/index.html), and a public web-based graphical user interface software (http://galaxy.qbrc.org/tool_runner?tool_id=mi_clip) for customized analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data

Characterizing the binding behaviors of RNA-binding proteins (RBPs) is important for understanding their functional roles in gene expression regulation. However, current high-throughput experimental methods for identifying RBP targets, such as CLIP-seq and RNAcompete, usually suffer from the false negative issue. Here, we develop a deep boosting based machine learning approach, called DeBooster...

متن کامل

De Novo Prediction of PTBP1 Binding and Splicing Targets Reveals Unexpected Features of Its RNA Recognition and Function

The splicing regulator Polypyrimidine Tract Binding Protein (PTBP1) has four RNA binding domains that each binds a short pyrimidine element, allowing recognition of diverse pyrimidine-rich sequences. This variation makes it difficult to evaluate PTBP1 binding to particular sites based on sequence alone and thus to identify target RNAs. Conversely, transcriptome-wide binding assays such as CLIP ...

متن کامل

Assessing Computational Steps for CLIP-Seq Data Analysis

RNA-binding protein (RBP) is a key player in regulating gene expression at the posttranscriptional level. CLIP-Seq, with the ability to provide a genome-wide map of protein-RNA interactions, has been increasingly used to decipher RBP-mediated posttranscriptional regulation. Generating highly reliable binding sites from CLIP-Seq requires not only stringent library preparation but also considerab...

متن کامل

MicroRNA transfection and AGO-bound CLIP-seq data sets reveal distinct determinants of miRNA action.

Microarray expression analyses following miRNA transfection/inhibition and, more recently, Argonaute cross-linked immunoprecipitation (CLIP)-seq assays have been used to detect miRNA target sites. CLIP and expression approaches measure differing stages of miRNA functioning-initial binding of the miRNP complex and subsequent message repression. We use nonparametric predictive models to character...

متن کامل

starBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data

MicroRNAs (miRNAs) represent an important class of small non-coding RNAs (sRNAs) that regulate gene expression by targeting messenger RNAs. However, assigning miRNAs to their regulatory target genes remains technically challenging. Recently, high-throughput CLIP-Seq and degradome sequencing (Degradome-Seq) methods have been applied to identify the sites of Argonaute interaction and miRNA cleava...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014